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Nonperiodic orbit sums in Weyl’'s expansion for billiards
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Weyl's expansion for the asymptotic mode density of billiards consists of the area, length, curvature, and
corner terms. The area term has been associated with the so-called zero-length orbits. Here, closed nonperiodic
paths corresponding to the length and corner terms are constr{8fi€163-651X99)11709-4

PACS numbdrs): 05.45~-a, 03.65.Sq

[. INTRODUCTION account for the length term. In Sec. Ill orbits contributing to
the corner term are examined. Finally, some remarks are
The asymptotic mode density appears in various branchegwade in the last section.
in physics. In a very early analysis of the density of eigen-
modes for a cavity with reflecting walls, Weyl proved that Il. LENGTH TERM
the leading term is proportional solely to the volume of the
domain, and independent of the shapé Since then terms Using the stationary method, Gutzwiller derived from
that account for the surface, shape, and connectivity of thEeynman’s path integral the approximate propagator from
domain were found to refine asymptotic expansifds4].  tor’ in the time difference [6],
For a billiard inside a simply connected domain of the Eu-

g:gjnefgazlgne, the two-dimensional version of Weyl's expan Ksc(rar’;t):dEtr (2mi)-N2\[deC]
xXexdiR(r,r’;t)—iM m/2], 2
A L
p(E)~ 71—~ 877\/E+ 127 j; c(s)ds where R is Hamilton’s principal functionM is the phase
index obtained by counting the number of conjugate points
1 T« along each classical path over which the summation is taken,
+52 Z (;— ;) 8(E), (1 Nis the dimensionality, an@ is the matrix of the negative
' second variations oR,
where Dirichlet boundary conditions are used, units are set at R
2m=#=1, the boundary is characterized by the arc lersgth Cij(r,r’;t)=— ©)

arar!
and A, L, c(s), «; are the area, total length, curvature, and T

inner angle of the corner, respectively. converting time to energy, the propagator is transformed
Most studies of eigenvalue densities are based on th y . fg . 9y, propag

Green'’s function technique. Mathematical asymptotic theor 0 Green’s function as

involves the Tauberian theorems from the theory of Laplace "

transforms. Balian and Bloch worked with energy Green’'s G(r,r’;E)ziflj dtK(r,r';t)exp(iEt). (4)

functions. Without requiring Tauberian theorems, they ob- 0

tained a multiple reflection expansion for Green’s functions.

The use of curvilinear coordinates was also included in theiBy using propagatof2), after integrating over time again by

discussions. the method of the stationary phase, Gutzwiller's semiclassi-
The area term has the simple meaning that the probabilitgal approximation to Green’s function is given by

for a system to be in a particular subset of phase space is

proportional to the volume of the subset. This term has been

associated with the so-called zero-length orbits in the semi- Gsdr,r';E)

classical theory5].
The periodic orbit theory of Gutzwiller, known as the Xexdis(r,r';E)—ium/2], (5

trace formulas, relates the fine details of oscillating density

of states with classical periodic orbit§,7]. A trace formula  \yhereSis the action integraly. is again the phase index, i.e.,

has been derived for integrable systems by Berry and Tabgre nymber of conjugate points, but obtained by varying the
[8]. Other extensions of the Gutzwiller theory have been detrajectory at constant enerdyinstead of timet, and

veloped[9,10]. However, not much attention has been drawn

> o]

B (Zwi)(N+1)/2 cltr.

to the role of nonperiodic orbits. Here we shall relate some 23 1 P
nonperiodic orbits to Weyl's expansions. In Sec. Il a family D=(-1)N—deC=(— 1)Nfde< ﬂ) (6)
of closed nonperiodic orbits of single reflection is given to IE? qq’ ar
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where in the last equation is in the subspace transverse to o 1

the trajectory in the local coordinate system, gndis its —f dxf dy—.Hgl)(Zky):—
conjugate momentum. Once Green’s function is known, the o "4

density of states can be calculated by

£ (14
877\/E’
which gives exactly the length term in Weyl's expansi@n

1 If we estimate Green'’s function directly from E), the
p(E)=— ;Imf drG(r,r;E). (7)  result becomes

When the semiclassical approximation is made, the den- G- 1 ik 15
sity of states is expressed in terms of classical closed orbits. i /_ka exp(2iky), (15
The zero-length orbits contribute to the average density of

states. When the method of stationary phase is again used f@fich is consistent with the abod,, in the asymptotic
the integration over, only the periodic orbits still remain in approximation. However, its contribution to the density of
the summation. states isC/(4+2E), which is different from the expected

_Fora blll|e_1rd, there sa fam||_y of closed orbits involving result by a factor ofy2. This situation is similar to that of
single reflection. Consider the simplest case when the bound-

ists of th . d the insid on is th ero-length orbits. Since integration over smadiontributes
ary consists of th& axis, and the Inside region 1s the upper significantly, we have to use the uniform approximation with
plane. A closed orbit of the family is an orbit going from Hankel's function
(xy) (with y posmye) to (x,0) and t.hen retu’rn'mg back to When a bounce takes place at a posisai the boundary
(x,y). The calculation of the Jacobiatr, /dp| in expres-

. S . . with curvaturec(s), the closed orbit along the normal to the
sion (6) fo_r D is given in the Appendix. From Eq¢6) and boundary still exists. Set the coordinate system with the ori-
(A15), noticing that gin at the bounce point and the axis along the normal
o, _ . ) ) 3 directing towards the inside of the billiard. By using Eqgs.
E=k®, L=2y, q=2k=L/t, 0°S/9E°=—-L/(4k"), (A12) and(A13), the counterparts of quantiti¢8) are found

. to be
we find

D=1/(8ky), |detC|=1/(4t?). ®) D=1/8ky(1—cy)], |detC|=1[4t*(1—cy)], (16)

It is easy to verify that Hamilton’s principal functidR and which gives the same length term.

the action integrak are
I1l. CORNER TERM

= 2 =
R=yit, - S=2ky. © In the previous section we have considered closed orbits

of single reflection. For a corner with an acute angle there is
a family of closed orbits with double reflection. We shall first
examine an acute corner, and then extend the analysis to an
, (100  obtuse corner.

From approximatior(2) for the propagator, we have

1 2
Keo=— —ex;{ i v

4jrt t
where subscript “co” stands for “closed orbits.” By using A. Acute corners
the formula for Hankel's function, For a corner with an acute angte we may construct a

closed orbit of double reflection as follows. Let us denote by
O the vertex of the corner, and YA andOB its two sides.
Suppose that the mirror image ©fA with respect tcOB is
(1)  OA’, and the image oD B with respect tadOA’ is OB'. In
this way we get the first and second images of the original
from Eq. (4) Green'’s function is obtained as corner, and a given poin® is then mapped t®, in the
cornerA’OB’, as shown in Fig. 1. The straight lif@Q,,
after mapping its segments back into the original corner,
gives the closed orbit looked for.
Denote byr=|OQ| the length of0Q. The length of the
By means of relation(7), its contribution to the density of closed orbit is then
states may be estimated by using

2

" vl e 1 z
H (xz)=TzV exp 5 ix HT
0

}t_”_ldt,

1 (1)
Gedr.1iE) == 2 HEV(2Ky). (12

|QQ,|=2r sina. (17
J; dzzHY(az) From Egs.(A15) and(2), we have
1 1+utv 1+pu—v 1 (rsina)?
_ Touip—va—p—1 _
=24 ra T 3 )r 5 ) (13 Keoz™ 777 eXp(l : : (18

to be that, from Eqgs(4) and(7), leads to
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FIG. 1. Images of a given poin in a corner. Some mediate
point Q' is used to construct folded paths.

Pco o(E), (19

; 87 sirfa

where we have used formul(d3) and have writterE asE
+ie to give

1
E+ie

o™
i—&(E).

Pl
E

The corner term in Weyl's expansion for the rectangular cor-
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7l/(24a) from expression(l), the semiclassical value is
3/(8m7a). The ratio is 9?~0.912.

In the above discussion we have considered only orbits of
double reflection, which hit sid®B first. An extra factor 2
should appear for those orbits to count the two different
ways of selecting orbits according to which side is hit first.

B. Obtuse corners

For an obtuse corner the above closed orbits of double
reflection do not exist. A natural way of continuation has to
be found. For this purpose we use the folding property of the
propagator

K(r,r’;t—t’)=j dr”K(r,r";t—=t")K(r",r";t"—t")
(22

to include two-piece closed orbits. We first examine the case
of an acute corner. Let us consider a two-segment broken
line from Q to Q, via some mediate poir®’ shown in Fig.

1, and set—t"=t"—t'=r. Suppose that the polar coordi-
nates of these three points ared,), (r,,6,)=(r,2a+ 6;),

and (rq,6p), respectively. In similarity to Eq10), we may
derive the propagator for each segment. By means of the
folding property, we find for the broken path,

K(Q,Q,|Q")= ! fde ex i—[2r2+2r2
e (4im7)? ° ar 0

—2rrgcog 0y— 0;)—2rrgcos 6p— 65)]1,

ner is estimated to be 1/16, in agreement with the value

given by expressiofil9).

Expression(19) is not the same as the corner term in
Weyl's expansion(1). A corner gives a correction to the
length term due to the restriction on the domain of integra

tion. Set the vertexO at the origin, and sid® A along thex
axis. The change in the domain of integration

oo X
f dxf dy—>f dxfy dy, with y=tana
0 0

gives the correction to the density of states

2 (= (v 1 1
5p=—;lmJ'0 dyfo dXEHO (Zky)zmb‘(E),

(20

where the factor 2 in front accounts for the two sides, and th

use of Green’s functionil2) for single reflection orbits has

been made. Thus, by combining the above two correction

the total is

1( ¢ +2 cot )5(E) (22
pcozzg E « .

Si

(23

where the integration domain fof, is determined by the

constraints & 0p<3«a, 0<6i<ea, |0y—6;/<m, and |6,

— 0,|< . At the limit of the rectangular corner, propagator
(23), after integrating ovep,, reduces to

|“dok(@.0i00)- k(@00

w11 ,r2>
_E{EmeXF{IT ] (24)

Compared with expected forrfil8), K(Q,Q,|Q’) equals
half of K..,. It can be verified that if we use the method of
stationary phase approximation in the Cartesian coordinate
system for the integration involvin@)’ propagator(23)
ould revert to Eq(18) exactly. However, if we count the
two ways of selecting orbits, the result here turns out to be

Detter.

Generally, we may approximate the propagator between a
reference point and some mediate one, €agndQ’ in Fig.
1, by the semiclassical propagator involving classical paths
with 0 to 2 bounces. Besides imag@s andQ,, pointQ has
two more imagesQ_; and Q_, obtained clockwise, as

This is not of the same form as that in Weyl's expansion. Foishown in Fig. 1. The paths, which contribute to the semiclas-

a=(1/2—6)m a little smaller than the rectangle from Eq.

(21) the lowest order is 1/1:6 6/8, while that from Weyl's
expansion is 1/16 56/24. For very smalky, compared with

sical propagator fronQ’ to Q, are straight segment3’Q,

Q'Q;, Q'Q,, Q'Q_4, and Q'Q_,. The last two corre-
spond to paths hitting sid@ A first. Similarly, by consider-
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ing images ofQ’, paths contributing to the propagator from IV. DISCUSSIONS
Qto Q can be found. By means of the fc_)ldmg property, the In the above we have examined the role played by closed
combination of these two propagators gives an approximate

; O , Classical orbits with single and double reflection on the
ggogapg;‘;or fromQ to Q itself, which includesk(Q,Q|Q") boundary for billiards. Here we make some concluding re-

Calculation in the Cartesian coordinate system for themarks. :

rectangular corner is rather easy. In this case l@thand (1) So far, we havg considered only the length term and
Q_, are in the third quadrant, whil, andQ_, are, respec- the corner term, Ieaw_n_g the curvature term unto_u_ched..The
tiv;azly in the second and fou,rth quelxdrantsilEacH path arisesame S1gn for bOth. Dirichlet and Neumann condlthns gives

' : s a hint that orbits of double reflection are dominant. In
r}S“rinciple, we can consider the contribution from two-piece
closed paths, as we did for obtuse corners. Unfortunately,
Bven the simple case of a circle does not admit simple ex-
pressions. One way to get round the intricate situation of a
circle is to consider its inscribed polygof#].

propagator. Denote byx(y) and (Xq,Yo) the coordinates of
Q andQ’, respectively. There is a correspondence betwee
closed paths and length square suUi(s+X)%+ (Y= Yo)?]

+[(x=Xg)2+ (Y*Yo)?2]. Here the first square brackets cor-

!
respond tﬁ the Ipath_ frog@ to Q’, 3nd ,thdef secondt,) to the () A way to derive the propagator for a corner is to use
return path. A plus sign betweerandx, indicates a bounce ,jjinear coordinates. A corner can be “flattened” by in-

on sideOB, while that betweery andy;, indicates a bounce  4q,,cing the tranformation fromx(y)— (u,v) defined by
on sideOA. Thus, each path has its “four signs” signature,

which is the four signs appearing in the square sum. For

X=rcogyp), y=rsin(ye),
example, the closed path without any bounces may be <ye) Y nre)

marked as—— — —, which contributes to the area term. It with
can be verified that each of the paths+—+ and -
+ —+ — results in r’=u’+~%v2, tane=wlu, y=mwla, y=alm,
(25)
1 £ 1 (E) wherea is the inner angle of the corner as before. The Jaco-

- S(E . > SN o
2 877\/E 1672 bian of this transformation is equal to one, which is made to
keep the area and length terms unchanged. The transformed

for the level density, while each of the pathis—— —, Laplacian can be derived as

—+-—, ——+—,and———+, gives A=+ 32+(y*—1)
\%
2 2
1 7 1 , U, vo , 2uv u v
= L X\ d,— —=dg— —d,— ——=dydy— —=dy— =y |-
2877\/E+32775(E)' uo2tu 2tV TUTV o Tu e T
(26)

Closed paths with a total of two bounces, besides path
-+—+and+—+—,are+——+, —++—, ++——,
and— — + +, each of which contribute8(E)/64. Paths wit
three bounces aret++-, ++—+, +—++, and
—++ +, each of which contributes- 5(E)/327. The only m—a? 1 _ 421
path with four bounces is- + + +, whose contribution is == (y—y) =5 (27)
5(E)/(167?). The total contribution of these 16 terms re- 2Ama 24 24y

cover exactly the area and length terms, and give the corn%y means of the perturbation expansion for the propagator

term as the corner term can be obtained.
(3) Only Dirichlet boundary conditions have been consid-
1 1 ered in the above. The extension to Neumann conditions is
16 16,2 (E) rather straightforward. Since there seems to be no general
formula for the corner term at Neumann conditions in the
literature[7], a semiclassical estimation can now be made
We see that the paths with a single bounce on both sides giugsing our approach.
the main contribution to the corner term. (4) The closed paths considered above have a zero limit-
Thus, for an obtuse corner, although closed classical oring length. There are other closed orbits of a nonzero limit-
bits of double reflection generally do not exist, we may stilling length. For example, there is a continuous family of
calculate the corner term from the two-piece paths of justlosed orbits from the diameter orbit to the equilateral tri-
two single reflections on both sides, which are made eitheangle orbit in a circular disk. Any member of the family is an
by only one piece or by each of the two pieces. Due to tha@sosceles triangle with one vertex inside the circle. The role
cancellation among terms for the folding propagator the applayed by such orbits is worth examining.
proximation keeps the main contribution. However, now the (5) We may extend our analysis to include connectivity
integrals involved cannot be estimated analytically, and nuand higher dimensionality.
merical methods have to be used. Some problems are under study.

We now regard the product with the factoy’—1) as the
perturbation tod2+d2=A,. The factor ¢>—1) is indeed
tempting if one notes that the corner term is
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y V=0, vy=1. (A3)
’\ g’ Denote by a dot the derivative with respect to the arc length
s. The tangent and normal unit vectors age= (x;,y;) and
s'+6s’ n=(—vy1.X;), respectively. This implies that

vi=Yy; and vy, =X;.

Assume that a perturbations$, 5v) from s; to s=s;+ 8s
results in the perturbatioré(x) atO. Up to the lowest order,

we have
0¢ X
X=x(s)=x;+x;85=v,, 8s and y=y(s)=y,+y,55~Yy;.
(A4)
s+6s ~

It can be seen thabv,,=v,—Vv,,=«. From Eq.(A3), the
s relationv,(v,) +vy(dv,) = 0 implies thatdv,,=0. That is,
at’'s we havev,=« and v,=vy,=1. Using v,/v,=(x

FIG. 2. Perturbation of a path. -9y, we find
ACKNOWLEDGMENTS Vi, 85— E=Y k. (A5)
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Similarly, the relationv=v,x+v,y leads to

where we have used the curvature formytacx. Equations
APPENDIX: JACOBIAN @R, /P! (A5) and(A6) can be written as

: ) a Wi yalva
Euclidean plane, we may derive the Poincanap from i Vi, +Cyy
bounce to bounce in Birkhoff coordinates,¥), wherev is . R

the component of the velocity in the tangent direction to theThe above transform matrix may be written as
boundary right after reflection, argithe arc length along the

For a billiard inside a simply connected domain of the (551

f) . (A7)

5V1 K

boundary. Since the absolute value of velocity is conserved Ny, O 1 0\/1 vy,
for a billiard, we may normalize the velocity as a unit vector =l o v Neve 1llo 1) (A8)
and then letve[0,1]. The linearized Poincarenap from AT
(s1,v1) to (s,,v,) can be expressed §51-13 Its inverse
M(12)—( (11261 =V )/va, —l1a/viiva, 3 =J‘1—(1 _y1)< 1 0)<Vu 0 )
C1Vay +CoVyy —112€1Co  (11Ca— Vo )/vy e lo 1 [l-evy 1)V 00 1k,
W 0 1 o\/—1 —I describes the tranformation frondg,,vq) to (&,«).
:( 2L )( 12) Along similar lines we may derive the Jacobian matrices
0 vy /i—-Calvy 1/1 0 -1 between 6s,,dv,) and ¢, «). There is a main difference.

(A2) v, of the velocity right before a bounce. By taking this into
account,v, in the above formulas has to be replaced by
—v, . For example,

When following the above derivation f&,, we usev, and
( 1 0) (Vl n 0 )

- C]_/VlJ_ 1 0 1/\/“_
wherel ;5 is the length of the chord joining; ands,, v, is

the normal component of the velocity, ands the curvature s, —1Ny —Yalva [ €
of the billiard boundary. It is often useful to know the Jaco- - c, —Vy, +CyYo
bian matrixd(s,v)/d(&,«), whereé and k are perturbations

in displacement and velocity at a given poiét on the and

straight line joinings; ands, along the direction perpendicu-

lar to the path. Without loss of generality we may choose the -1y O 1 0\(1 v
coordinate system with the origin & and they axis along ‘]s§(32):( 0 )( 1) ( 0 1 )

) . (A10)

5V2 K

oo . —Va [\ —Calvy
the path froms; to s,, as shown in Fig. 2(In the figures; (A11)

ands, are marked as ands’, respectively. It is obvious
that ats,, Noting thatl;,=Yy,—Yy;, we can verify that
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M(12) =Jg:(S5)des(S1)- boundary with curvature=0, matrix M is significantly

simplified. In this case, using expressioi#sl2) and (A9),
For an orbit that starts and ends inside the billiard, respecy ﬂave g &b oel2) (A9)

tively, at (ro,po) and (,p;), and makes successive bounces
ats;, Sy, ... ,S,in between, we have (1 |Yn|)<—1 |n1‘n) <_1 |12)(1 |Y1|>

(gt) (go) o 1/lo -1 0o -1/lo0 1
=M| |,
Kt Ko

1 L
=(—1)”( ) (A14)
M=Jg(sHM(N=110)---M(12Jg((sy).  (A12) 01
The Jacobiamé,/dx, is determined as whereL is the total length of the orbit. Thus, from E@13)
we have
aftlﬁKOEkarl /ﬁpiz/\/‘lz, (A13)
or lop|=(—1)"L/k (A15)

wherek is the absolute value of the conserved momentum.
When all the bounces happen at straight segments of ther the Jacobian.
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