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Nonperiodic orbit sums in Weyl’s expansion for billiards

Wei-Mou Zheng
Institute of Theoretical Physics, Academia Sinica, Beijing 100080, China

~Received 13 April 1999!

Weyl’s expansion for the asymptotic mode density of billiards consists of the area, length, curvature, and
corner terms. The area term has been associated with the so-called zero-length orbits. Here, closed nonperiodic
paths corresponding to the length and corner terms are constructed.@S1063-651X~99!11709-4#

PACS number~s!: 05.45.2a, 03.65.Sq
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I. INTRODUCTION

The asymptotic mode density appears in various branc
in physics. In a very early analysis of the density of eige
modes for a cavity with reflecting walls, Weyl proved th
the leading term is proportional solely to the volume of t
domain, and independent of the shape@1#. Since then terms
that account for the surface, shape, and connectivity of
domain were found to refine asymptotic expansions@2–4#.
For a billiard inside a simply connected domain of the E
clidean plane, the two-dimensional version of Weyl’s expa
sion reads

r~E!;
A
4p

2
L

8pAE
1F 1

12p R c~s!ds

1
1

24 (
i

S p

a i
2

a i

p D Gd~E!, ~1!

where Dirichlet boundary conditions are used, units are se
2m5\51, the boundary is characterized by the arc lengts,
andA, L, c(s), a i are the area, total length, curvature, a
inner angle of the corner, respectively.

Most studies of eigenvalue densities are based on
Green’s function technique. Mathematical asymptotic the
involves the Tauberian theorems from the theory of Lapl
transforms. Balian and Bloch worked with energy Gree
functions. Without requiring Tauberian theorems, they o
tained a multiple reflection expansion for Green’s functio
The use of curvilinear coordinates was also included in th
discussions.

The area term has the simple meaning that the probab
for a system to be in a particular subset of phase spac
proportional to the volume of the subset. This term has b
associated with the so-called zero-length orbits in the se
classical theory@5#.

The periodic orbit theory of Gutzwiller, known as th
trace formulas, relates the fine details of oscillating den
of states with classical periodic orbits@6,7#. A trace formula
has been derived for integrable systems by Berry and Ta
@8#. Other extensions of the Gutzwiller theory have been
veloped@9,10#. However, not much attention has been dra
to the role of nonperiodic orbits. Here we shall relate so
nonperiodic orbits to Weyl’s expansions. In Sec. II a fam
of closed nonperiodic orbits of single reflection is given
PRE 601063-651X/99/60~3!/2845~6!/$15.00
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account for the length term. In Sec. III orbits contributing
the corner term are examined. Finally, some remarks
made in the last section.

II. LENGTH TERM

Using the stationary method, Gutzwiller derived fro
Feynman’s path integral the approximate propagator fromr
to r 8 in the time differencet @6#,

Ksc~r ,r 8;t !5(
cl.tr.

~2p i !2N/2AudetCu

3exp@ iR~r ,r 8;t !2 iM p/2#, ~2!

where R is Hamilton’s principal function,M is the phase
index obtained by counting the number of conjugate poi
along each classical path over which the summation is tak
N is the dimensionality, andC is the matrix of the negative
second variations ofR,

Ci j ~r ,r 8;t !52
]2R

]r i]r j8
. ~3!

By converting time to energy, the propagator is transform
to Green’s function as

G~r ,r 8;E!5 i 21E
0

`

dtK~r ,r 8;t !exp~ iEt !. ~4!

By using propagator~2!, after integrating over time again b
the method of the stationary phase, Gutzwiller’s semicla
cal approximation to Green’s function is given by

Gsc~r ,r 8;E!5
2p

~2p i !(N11)/2 (
cl.tr.

AuDu

3exp@ iS~r ,r 8;E!2 imp/2#, ~5!

whereS is the action integral,m is again the phase index, i.e
the number of conjugate points, but obtained by varying
trajectory at constant energyE instead of timet, and

D5~21!N
]2S

]E2
detC5~21!N

1

q̇q̇8
detS ]p'8

]r'
D , ~6!
2845 © 1999 The American Physical Society
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where in the last equationr' is in the subspace transverse
the trajectory in the local coordinate system, andp' is its
conjugate momentum. Once Green’s function is known,
density of states can be calculated by

r~E!52
1

p
ImE drG~r ,r ;E!. ~7!

When the semiclassical approximation is made, the d
sity of states is expressed in terms of classical closed or
The zero-length orbits contribute to the average density
states. When the method of stationary phase is again use
the integration overr , only the periodic orbits still remain in
the summation.

For a billiard, there is a family of closed orbits involvin
single reflection. Consider the simplest case when the bou
ary consists of thex axis, and the inside region is the upp
plane. A closed orbit of the family is an orbit going from
(x,y) ~with y positive! to (x,0) and then returning back t
(x,y). The calculation of the Jacobian]r' /]p'8 in expres-
sion ~6! for D is given in the Appendix. From Eqs.~6! and
~A15!, noticing that

E[k2, L[2y, q̇52k5L/t, ]2S/]E252L/~4k3!,

we find

D51/~8ky!, udetCu51/~4t2!. ~8!

It is easy to verify that Hamilton’s principal functionR and
the action integralS are

R5y2/t, S52ky. ~9!

From approximation~2! for the propagator, we have

Kco52
1

4ipt
expS i

y2

t D , ~10!

where subscript ‘‘co’’ stands for ‘‘closed orbits.’’ By usin
the formula for Hankel’s function,

Hn
(1)~xz!5

i 2n21

p
znE

0

`

expF1

2
ixS t1

z2

t D G t2n21dt,

~11!

from Eq. ~4! Green’s function is obtained as

Gco~r ,r ;E!52
1

4i
H0

(1)~2ky!. ~12!

By means of relation~7!, its contribution to the density o
states may be estimated by using

E
0

`

dzzmHn
(1)~az!

5
1

p
2mi m2na2m21GS 11m1n

2 DGS 11m2n

2 D ~13!

to be
e

n-
ts.
f

for

d-

2E dxE
0

`

dy
1

4i
H0

(1)~2ky!52
L

8pAE
, ~14!

which gives exactly the length term in Weyl’s expansion~1!.
If we estimate Green’s function directly from Eq.~5!, the

result becomes

Gco8 52
1

4iApky
exp~2iky!, ~15!

which is consistent with the aboveGco in the asymptotic
approximation. However, its contribution to the density
states isL/(4A2Ep), which is different from the expected
result by a factor ofA2. This situation is similar to that o
zero-length orbits. Since integration over smally contributes
significantly, we have to use the uniform approximation w
Hankel’s function.

When a bounce takes place at a positions of the boundary
with curvaturec(s), the closed orbit along the normal to th
boundary still exists. Set the coordinate system with the
gin at the bounce point and they axis along the norma
directing towards the inside of the billiard. By using Eq
~A12! and~A13!, the counterparts of quantities~8! are found
to be

D51/@8ky~12cy!#, udetCu51/@4t2~12cy!#, ~16!

which gives the same length term.

III. CORNER TERM

In the previous section we have considered closed or
of single reflection. For a corner with an acute angle ther
a family of closed orbits with double reflection. We shall fir
examine an acute corner, and then extend the analysis t
obtuse corner.

A. Acute corners

For a corner with an acute anglea we may construct a
closed orbit of double reflection as follows. Let us denote
O the vertex of the corner, and byOA andOB its two sides.
Suppose that the mirror image ofOA with respect toOB is
OA8, and the image ofOB with respect toOA8 is OB8. In
this way we get the first and second images of the origi
corner, and a given pointQ is then mapped toQ2 in the
cornerA8OB8, as shown in Fig. 1. The straight lineQQ2,
after mapping its segments back into the original corn
gives the closed orbit looked for.

Denote byr 5uOQu the length ofOQ. The length of the
closed orbit is then

uQQ2u52r sina. ~17!

From Eqs.~A15! and ~2!, we have

Kco25
1

4ipt
expS i

~r sina!2

t D , ~18!

that, from Eqs.~4! and ~7!, leads to
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rco5
a

8p sin2a
d~E!, ~19!

where we have used formula~13! and have writtenE as E
1 i e to give

1

E1 i e
5P

1

E
1

p

i
d~E!.

The corner term in Weyl’s expansion for the rectangular c
ner is estimated to be 1/16, in agreement with the va
given by expression~19!.

Expression~19! is not the same as the corner term
Weyl’s expansion~1!. A corner gives a correction to th
length term due to the restriction on the domain of integ
tion. Set the vertexO at the origin, and sideOA along thex
axis. The change in the domain of integration

E dxE
0

`

dy→E dxE
0

gx

dy, with g5tana

gives the correction to the density of states

dr52
2

p
ImE

0

`

dyE
0

y/g

dx
1

4i
H0

(1)~2ky!5
1

4pg
d~E!,

~20!

where the factor 2 in front accounts for the two sides, and
use of Green’s function~12! for single reflection orbits has
been made. Thus, by combining the above two correctio
the total is

rco25
1

8p S a

sin2a
12 cota D d~E!. ~21!

This is not of the same form as that in Weyl’s expansion. F
a5(1/22d)p a little smaller than the rectangle from E
~21! the lowest order is 1/161d/8, while that from Weyl’s
expansion is 1/1615d/24. For very smalla, compared with

FIG. 1. Images of a given pointQ in a corner. Some mediat
point Q8 is used to construct folded paths.
-
e

-

e

s,

r

p/(24a) from expression~1!, the semiclassical value i
3/(8pa). The ratio is 9/p2'0.912.

In the above discussion we have considered only orbit
double reflection, which hit sideOB first. An extra factor 2
should appear for those orbits to count the two differe
ways of selecting orbits according to which side is hit firs

B. Obtuse corners

For an obtuse corner the above closed orbits of dou
reflection do not exist. A natural way of continuation has
be found. For this purpose we use the folding property of
propagator

K~r ,r 8;t2t8!5E dr 9K~r ,r 9;t2t9!K~r 9,r 8;t92t8!

~22!

to include two-piece closed orbits. We first examine the c
of an acute corner. Let us consider a two-segment bro
line from Q to Q2 via some mediate pointQ8 shown in Fig.
1, and sett2t95t92t85t. Suppose that the polar coord
nates of these three points are (r ,u1), (r 2 ,u2)5(r ,2a1u1),
and (r 0 ,u0), respectively. In similarity to Eq.~10!, we may
derive the propagator for each segment. By means of
folding property, we find for the broken path,

K~Q,Q2uQ8!5
1

~4ipt!2E du0 expH i

4t
@2r 212r 0

2

22rr 0 cos~u02u1!22rr 0 cos~u02u2!#J ,

~23!

where the integration domain foru0 is determined by the
constraints 0<u0<3a, 0<u1<a, uu02u1u<p, and uu0
2u2u<p. At the limit of the rectangular corner, propagat
~23!, after integrating overu1, reduces to

E
0

a

du1K~Q,Q2uQ8!5
p

2
K~Q,Q2uQ8!

5
p

2 H 1

2

1

4ipt
expS i

r 2

t D J . ~24!

Compared with expected form~18!, K(Q,Q2uQ8) equals
half of Kco2. It can be verified that if we use the method
stationary phase approximation in the Cartesian coordin
system for the integration involvingQ8 propagator~23!
would revert to Eq.~18! exactly. However, if we count the
two ways of selecting orbits, the result here turns out to
better.

Generally, we may approximate the propagator betwee
reference point and some mediate one, say,Q andQ8 in Fig.
1, by the semiclassical propagator involving classical pa
with 0 to 2 bounces. Besides imagesQ1 andQ2, point Q has
two more imagesQ21 and Q22 obtained clockwise, as
shown in Fig. 1. The paths, which contribute to the semicl
sical propagator fromQ8 to Q, are straight segmentsQ8Q,
Q8Q1 , Q8Q2 , Q8Q21, and Q8Q22. The last two corre-
spond to paths hitting sideOA first. Similarly, by consider-
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ing images ofQ8, paths contributing to the propagator fro
Q to Q8 can be found. By means of the folding property, t
combination of these two propagators gives an approxim
propagator fromQ to Q itself, which includesK(Q,Q2uQ8)
as a part.

Calculation in the Cartesian coordinate system for
rectangular corner is rather easy. In this case bothQ2 and
Q22 are in the third quadrant, whileQ1 andQ21 are, respec-
tively, in the second and fourth quadrants. Each path ar
as a length square in the exponent of the expression for
propagator. Denote by (x,y) and (x0 ,y0) the coordinates of
Q andQ8, respectively. There is a correspondence betw
closed paths and length square sums@(x6x0)21(y6y0)2#
1@(x6x0)21(y6y0)2#. Here the first square brackets co
respond to the path fromQ to Q8, and the second, to th
return path. A plus sign betweenx andx0 indicates a bounce
on sideOB, while that betweeny andy0 indicates a bounce
on sideOA. Thus, each path has its ‘‘four signs’’ signatur
which is the four signs appearing in the square sum.
example, the closed path without any bounces may
marked as2222, which contributes to the area term.
can be verified that each of the paths2121 and
1212 results in

1

2

L
8pAE

2
1

16p2
d~E!

for the level density, while each of the paths1222,
2122, 2212, and2221, gives

2
1

2

L
8pAE

1
1

32p
d~E!.

Closed paths with a total of two bounces, besides pa
2121 and 1212, are 1221, 2112, 1122,
and2211, each of which contributesd(E)/64. Paths with
three bounces are1112, 1121, 1211, and
2111, each of which contributes2d(E)/32p. The only
path with four bounces is1111, whose contribution is
d(E)/(16p2). The total contribution of these 16 terms r
cover exactly the area and length terms, and give the co
term as

S 1

16
2

1

16p2D d~E!.

We see that the paths with a single bounce on both sides
the main contribution to the corner term.

Thus, for an obtuse corner, although closed classical
bits of double reflection generally do not exist, we may s
calculate the corner term from the two-piece paths of j
two single reflections on both sides, which are made eit
by only one piece or by each of the two pieces. Due to
cancellation among terms for the folding propagator the
proximation keeps the main contribution. However, now
integrals involved cannot be estimated analytically, and
merical methods have to be used.
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IV. DISCUSSIONS

In the above we have examined the role played by clo
classical orbits with single and double reflection on t
boundary for billiards. Here we make some concluding
marks.

~1! So far, we have considered only the length term a
the corner term, leaving the curvature term untouched.
same sign for both Dirichlet and Neumann conditions giv
us a hint that orbits of double reflection are dominant.
principle, we can consider the contribution from two-pie
closed paths, as we did for obtuse corners. Unfortunat
even the simple case of a circle does not admit simple
pressions. One way to get round the intricate situation o
circle is to consider its inscribed polygons@4#.

~2! A way to derive the propagator for a corner is to u
curvilinear coordinates. A corner can be ‘‘flattened’’ by in
troducing the tranformation from (x,y)→(u,v) defined by

x5r cos~ ḡw!, y5r sin~ ḡw!,

with

r 25u21g2v2, tanw5gv/u, g5p/a, ḡ5a/p,
~25!

wherea is the inner angle of the corner as before. The Ja
bian of this transformation is equal to one, which is made
keep the area and length terms unchanged. The transfor
Laplacian can be derived as

D5]u
21]v

21~g221!

3S ]u
22

u2

r 2
]u

22
v2

r 2
]v

22
2uv

r 2
]u]v2

u

r 2
]u2

v

r 2
]vD .

~26!

We now regard the product with the factor (g221) as the
perturbation to]u

21]v
2[D0. The factor (g221) is indeed

tempting if one notes that the corner term is

p22a2

24pa
5

1

24
~g2ḡ !5

g221

24g
. ~27!

By means of the perturbation expansion for the propaga
the corner term can be obtained.

~3! Only Dirichlet boundary conditions have been cons
ered in the above. The extension to Neumann condition
rather straightforward. Since there seems to be no gen
formula for the corner term at Neumann conditions in t
literature @7#, a semiclassical estimation can now be ma
using our approach.

~4! The closed paths considered above have a zero li
ing length. There are other closed orbits of a nonzero lim
ing length. For example, there is a continuous family
closed orbits from the diameter orbit to the equilateral
angle orbit in a circular disk. Any member of the family is a
isosceles triangle with one vertex inside the circle. The r
played by such orbits is worth examining.

~5! We may extend our analysis to include connectiv
and higher dimensionality.

Some problems are under study.
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APPENDIX: JACOBIAN R' /P'8

For a billiard inside a simply connected domain of t
Euclidean plane, we may derive the Poincare´ map from
bounce to bounce in Birkhoff coordinates (s,v), wherev is
the component of the velocity in the tangent direction to
boundary right after reflection, ands, the arc length along the
boundary. Since the absolute value of velocity is conser
for a billiard, we may normalize the velocity as a unit vect
and then letvP@0,1#. The linearized Poincare´ map from
(s1 ,v1) to (s2 ,v2) can be expressed as@11–13#

M ~12!5S ~ l 12c12v1'!/v2' 2 l 12/v1'v2'

c1v2'1c2v1'2 l 12c1c2 ~ l 12c22v2'!/v1'
D

~A1!

5S 1/v2' 0

0 v2'
D S 1 0

2c2 /v2' 1D S 21 2 l 12

0 21 D
3S 1 0

2c1 /v1' 1D S v1' 0

0 1/v1'
D , ~A2!

wherel 12 is the length of the chord joinings1 ands2 , v' is
the normal component of the velocity, andc is the curvature
of the billiard boundary. It is often useful to know the Jac
bian matrix](s,v)/](j,k), wherej andk are perturbations
in displacement and velocity at a given pointO on the
straight line joinings1 ands2 along the direction perpendicu
lar to the path. Without loss of generality we may choose
coordinate system with the origin atO, and they axis along
the path froms1 to s2, as shown in Fig. 2.~In the figures1
and s2 are marked ass and s8, respectively.! It is obvious
that ats1,

FIG. 2. Perturbation of a path.
-

e

d
r

-

e

vx50, vy51. ~A3!

Denote by a dot the derivative with respect to the arc len
s. The tangent and normal unit vectors aret15( ẋ1 ,ẏ1) and
n5(2 ẏ1 ,ẋ1), respectively. This implies that

v15 ẏ1 and v1'5 ẋ1 .

Assume that a perturbation (ds,dv) from s1 to s̃5s11ds
results in the perturbation (j,k) at O. Up to the lowest order,
we have

x̃[x~ s̃!5x11 ẋ1ds5v1'ds and ỹ[y~ s̃!5y11 ẏ1ds'y1 .
~A4!

It can be seen thatdv1x[ ṽx2v1x5k. From Eq.~A3!, the
relationvx(dvx)1vy(dvy)50 implies thatdv1y50. That is,
at s̃ we have ṽx5k and ṽy5v1y51. Using ṽx / ṽy5( x̃
2j)/ ỹ, we find

v1'ds2j5y1k. ~A5!

Similarly, the relationv5vxẋ1vyẏ leads to

dv15v1'k1 ÿds5v1'k1c1v1'ds, ~A6!

where we have used the curvature formulaÿ5cẋ. Equations
~A5! and ~A6! can be written as

S ds1

dv1
D 5S 1/v1' y1 /v1'

c1 v1'1c1y1
D S j

k D . ~A7!

The above transform matrix may be written as

Jsj5S 1/v1' 0

0 v1'
D S 1 0

c1 /v1' 1D S 1 y1

0 1 D . ~A8!

Its inverse

Jjs[Jsj
215S 1 2y1

0 1 D S 1 0

2c1 /v1' 1D S v1' 0

0 1/v1'
D
~A9!

describes the tranformation from (ds1 ,dv1) to (j,k).
Along similar lines we may derive the Jacobian matric

between (ds2 ,dv2) and (j,k). There is a main difference
When following the above derivation fors2, we usevx and
vy of the velocity right before a bounce. By taking this in
account,v' in the above formulas has to be replaced b
2v' . For example,

S ds2

dv2
D 5S 21/v2' 2y2 /v2'

c2 2v2'1c2y2
D S j

k D , ~A10!

and

Jsj~s2!5S 21/v2' 0

0 2v2'
D S 1 0

2c2 /v2' 1D S 1 y2

0 1 D .

~A11!

Noting thatl 125y22y1, we can verify that
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M ~12!5Jsj~s2!Jjs~s1!.

For an orbit that starts and ends inside the billiard, resp
tively, at (r0 ,p0) and (r t ,pt), and makes successive bounc
at s1 , s2, . . . , sn in between, we have

S j t

k t
D 5MS j0

k0
D ,

M5Jjs~sn!M ~n21,n!•••M ~12!Jsj~s1!. ~A12!

The Jacobian]j t /]k0 is determined as

]j t /]k0[k]r' /]p'8 5M12, ~A13!

wherek is the absolute value of the conserved momentu
When all the bounces happen at straight segments of
cs

an
c-
s

.
he

boundary with curvaturec50, matrix M is significantly
simplified. In this case, using expressions~A12! and ~A9!,
we have

M5S 1 uynu

0 1 D S 21 l n21,n

0 21 D •••S 21 l 12

0 21D S 1 uy1u

0 1 D
5~21!nS 1 L

0 1D , ~A14!

whereL is the total length of the orbit. Thus, from Eq.~A13!
we have

]r' /]p'8 5~21!nL/k ~A15!

for the Jacobian.
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